

bioradmedisysTM

SIGNATURE HIP REPLACEMENT SYSTEM

ACETABULAR CUP

Material Specs: Forged Ti6Al4V ELI (Extra Low Interstitials)

- True hemispherical design with a greater area of rim interface contact offering better stability
- Asymmetric sintered Titanium 700 +/- 50 microns coating of high porosity, as per ASTM standards
- Cluster hole design for better screw fixation & stability
- Internal surface highly polished to avoid friction with Liner
- Sizes (mm): 44-60 (2mm increment)

LINER

Material Specs: Highly Cross Linked Polyethylene (XLPE), minimizes wear & increases durability

- Option of Neutral & 20° Hooded liner
- Star Shaped profile to avoid rotational movement of the liner with the acetabular cup
- Sizes (mm): 44, 46, 48(28/32), 50, 52, 54, 56, 58, 60

CUP SIZES	44	46	48	50	52	54	56	58	60	
INER	28		28/32		32/36					

STEM

Material Specs: Forged Ti6Al4V ELI (Extra Low Interstitials)

- Fully HA coated stem with coating thickness 150 +/- 50 microns induces rapid osteointegration^{1,2,3,4}
- Optimised neck geometry increases range of motion⁵
- Range of Motion upto 148°
- Double tapered stem design avoids proximal stress shielding
- Vertical and Horizontal grooves provide rotational & axial stability
- 12/14 neck taper

Stem Size	0	1	2	3	4	5	6	7	8
Length	115	130	140	146	150	154	161	166	170
Head Offset	38	39	39	41	41	42	42	43	44
Neck Length	38.5								
Neck Angle	135°								

Stem Length, Head Offset & Neck Length in mm

FEMORAL METAL HEAD

Material Specs: CoCrMo Alloy

- Skirtless design maximises range of motion
- Sizes (mm): 28, 32, 36 (-4, 0, +4)

BIOLOX® delta HEAD

Material Specs: Fourth Generation Advanced Ceramic

BIOLOX® delta, the only ceramic with 11 years of successful clinical experience and with more than 5 million implanted components.

- Lowest wear rate
- Outstanding biocompatibility and excellent stability in vivo
- Diamond-like hardness of the material & Exacting Sphericity
- High resistance to third-body wear
- Sizes (mm) 28, 32, 36
- Neck length options: Small , Medium , Large

BONE SCREW

Material Specs: Forged Ti6Al4V ELI (Extra Low Interstitials)

- Self-Tapping design
- Sizes: 20, 25, 30, 35, 40, 45 & 50 (mm) Diameter: 6.5 Ø

Forged Titanium (Ti6Al4V ELI) & Cobalt Chrome (CoCr) is imported from Orchid.

The highly cross-linked poly (XLPE) imported ISO5834 & ASTM F 648 international standards.

We undertake Germany based Endolab's specialised product validation and in-vitro simulation testing to ensure perfection to the smallest details.

The asymmetric porous Titanium plasma spray coating for the acetabular cup is achieved at the world-class facilities of DoT GmBH (Germany)

The HA coating for the stem is achieved at the world-class facilities of Plasma Biotal the leading company in medical coating

- International Orthopaedics (SICOT) (2011) 35:189–194 Twenty-year results of the cementless Corail stem Jean-Pierre Vidalain

- Vidalain JP. CorailStem Long-Term Results based on the 15-Years ARTRO Group Experience. Fifteen Years of Clinical Experience with Hydroxyapatite
- Sychterz CJ, Claus AM, Engh CA. What we have learned about long-term cementless fixation from autopsy retrievals. Clin Orthop Relat Res. 2002 Dec; (405):79-91
- Key engineering materials volume 529-30 (2013) pp 279-84 Comparison of polyethylene wear between highly cross linked (XLPE) and annealed UHMWPE
- Cups of a true hemispherical design are more stable than low-profile designs (J. Arthroplasty, Vol. 7, No. 3, 1992)

